Pediatric Gait Jenna Lisenby, DPT Valley Kids Therapy

Objectives

- Appropriately assess pediatric patients for delays in gross motor skills and gait deviations.
- Refer patients with orthopedic and neurological conditions for appropriate therapies and resources in the community

Developmental Milestones

- Foundation to Gait
 - Muscular Strengthening
 - Motor Learning & Planning (Cognitive)
 - Sensory: Vision, Vestibular, Proprioception

Prone Development & Gait

– Tummy time

- Develop the neck, back, and shoulder muscles needed to meet infant developmental milestones.
- Prevent early motor delays and conditions such as flat head syndrome (positional plagiocephaly) and twisted neck (positional torticollis).

– GAIT IMPACTS

- Strengthens cervical posture
- Strengthens core and upper extremity
- Posterior trunk extensors
- Lumbar vs Hip Dissociation

Developmental Impact

- Back to Sleep campaign 1994
 - Federal statistics from 2005 → 60% increase in developmental delays in the last 10-15 years.
 - Co-morbid factor of missed developmental milestones?
- Decreased tummy time associated with delays in reaching early milestones 1
- "The studies have consistently shown that there was transient delay in motor development for healthy term and low-risk preterm infants who were not exposed to the prone position" 2

Impact on Gait

• Considerations:

Torticollis

- Directional preference
- Muscular imbalance
- Postural Instability
- Compensation for future gross motor milestone

https://www.bing.com/videos/search?q=one+leg+crawl+torticollis &&view=detall&mid=96A7CD4A86A3607A2B9E96A7CD4A86A3 607A2B9E&&FORM=VDRVRV

https://www.bing.com/videos/search?g=one+leg+crawl+torticollis &&view=detail&mid=BBD9809CAD90A13F3701BBD9809CAD90 A13F3701&rvsmid=96A7CD4A86A3607A2B9E96A7CD4A86A36 07A2B9E&FORM=VDQVAP

https://www.bing.com/videos/search?q=one+leg+crawl+torticollis&&view=deta il&mid=988442454539079C4A74988442454539079C4A74&rvsmid=96A7CD4 A86A3607A2B9E96A7CD4A86A3607A2B9E&FORM=VDQVAP

fppt.com

One Leg Crawl

One Leg Crawl

Rolling & Gait

Rolling

- Symmetry
- Directional preference

- Trunk and gluteal strength with rotation
- Core strengthening

Sitting & Gait

- Postural Stability in sitting and in quadruped
- Lateral pivoting with reaching across midline
- Considerations:
 - Thoracic and lumbar alignment
 - Scapular Symmetry
 - Neutral Head Alignment

Crawling & Gait

- Crawling
 - Facilitates trunk stability with contralateral extremity coordination
 - Symmetrical stride length bilaterally
 - Core strength and stability
 - Exploration / Sensory

anterior oblique sling

fppt.com

Pulling to Stand / Cruising & Gait

Pulling to Stand

fppt.com

- Weight shift posterior to anterior
- Bilateral lower extremity weight bearing
 - Working foot intrinsic musculature
- Lateral stability in standing
- Weight bearing through lower extremities
- Transitioning via ½ kneeling (hip dissociation)

fppt.com

Walking Independently

- Walking
 - Standing without support first 20-30 seconds
 - Average 13.5 months independent walking
 - Should not be on toes >25% of the time
 - Average falling 12 + times per day
 - Poor awareness of changes in surfaces
 - Wide base to more narrow
 - Guard high to low (arm position)

1 Year Old

- Wide base of Support
- High Guard Upper Extremity Posture
- Absent reciprocal arm swing
- Flat foot strike
- Excessive hip rotation

Gait Progression

- Walking

- Becomes more smooth
- Base becomes more narrow
- Arms swing
- Not up on toes
- Continues to fall, less frequently
- Begins to run

- Standing / Squatting

- Able to squat down and pick up toys
- Able to stand from the middle of the floor
 - Dynamic stretching of achilles

2 Years Old

- Demonstrates:
- Heel strike
- Reciprocal arm swing with 65% of pediatric population
- Average cadence 171
 steps per minute
- Decreased hip rotation
- Narrowing of base of support

Mature Gait Mechanics

- Phases
 - Heel Strike
 - 6 months after independent walking
 - Midstance
 - Heel Off
 - Toe Off
 - Swing

fppt.com

Gait Analysis

What to look for while assessing gait:

- Stability
- Velocity
- Step length
- Consistency
- Upper Extremity Support / Assistance
- Upper Extremity Movement
- Symmetry

Gait Deviations

Orthopedic

- Metatarsus Adductus
- Pes Planus
- Genu Valgum and Varum
- In Toeing
- Out Toeing
- Leg Length Discrepancy
- Scoliosis

Metatarsus Adductus

- The diagnosis if a 'C'-shaped curve, rather than a straight border, is present on the lateral aspect of the foot.
- About 90% of cases resolve by one year of age.
 - Mild to Moderate
- Severe cases benefit from intervention
- 10% have acetabular dysplasia

Metatarsus Adductus

 Treatment usually involves special exercises, and applying casts or special corrective shoes, and has a high rate of success in babies aged 6-9 months.

Pes Planus

- Inversion at talocrural joint
- Valgus and pronation at calcaneus and midfoot
 - Normal calcaneal valgus is 8 degrees at 1 year of age
 - Calcanealvalgus should be 0 by 8 years of age
- Causes:
 - Joint/ligamentous laxity
 - Low muscular tone

Pes Planus

- Looking up the kinetic chain:
 - Excessive medial rotation of tibia
- 1

Excessive pronation

Pelvis tilts

- Valgus loading of the knee (increase Q angle)
- Possible hip internal rotation
- Wide base of support
- Anterior pelvic tilt

Knee moves inward Leg internally rotates Overpronation of the foot

fppt.com

Pes Planus

- Treatment
 - Inserts in shoes
 - Full or ³/₄ length
 - UCBL if calcanealvalgus is significant
 - AFO if ankle significantly involved

Genu Valgum and Varum

Varum – Bowed Legs

- Decreased Q Angle
- Medial Tibiofemoral joint compression
- Supination at Ankle and Foot

ression compression

- MCL stress
- Increased patellar subluxation

Valgum – Knocked Knees

Increased Q angle

Lateral tibiofemoral

FIGURE 6-25 The Q-angle is measured between a line from the anterior superior liac spine to the middle of the patella and the projection of a line from the middle of the patella to the tibial tuberosity. Q-angles range from 10 to 14° for males and 15 to 17° for females. Very small Q-angles create a condition known as genu varum, or bowleggedness. Large Q-angles create genu valgrum, or knock-kneed position.

Genu Valgum and Varum

Genu Varum

- Causes
 - Physiologic (naturally occurring) newborn
 - Blounts (autosomal recessive growth disorder)
 - AKA "Tibia vara" tibia bends outward
 - Affects growth plates around knee, inside slows or stops
 - Rickets (softening of bone due to Vitamin D deficiency)
 - Skeletal Dysplasia
- Treatment
 - Physiologic spontaneously resolves by 3-4 years
 - Blounts
 - Leg bracing
 - Surgery (osteotomy or hemiepiphysiodesis lateral)
 - Weight management
 - Rickets is Vitamin D supplementation
 - Possible absorption disorder (Celiac, CF, Kidney)

fppt.com

Genu Valgum

- Children 3-4 years have up to 20°
- Age 7 = Valgus <12°, intermalleolar distance <8cm

Causes

- Physiologic (75% self correct 3-5 years)
- Injury usually unilateral
- Obesity
- Treatment
 - Observational if <15° in a child < 6 years old
 - Bracing ineffective
 - Orthotics to decrease valgus angle
 - Surgical
 - Hemiepiphysiodesis of medial side if >15° in a child < 10 years old

Rotational Deformities

Rotational Deformities

fppt.com

In Toeing

- Excessive femoral anteversion the most common cause of in-toeing.
- The normal range is from 30-40° at birth and decreases progressively throughout growth to about 15° at skeletal maturation.
 - Craig's test
- Children walk or stand with both patellae and feet pointing inward. If found in conjunction with internal tibial torsion it may lead to patellofemoral subluxation.

Excessive Femoral Anteversion

Position of the femoral head with the foot straight.

Most patients with excessive femoral anteversion "in-toe" to better position the femoral head.

In Toeing

- Decreased gluteal recruitment during single leg stance
- Knees and toes point inward
- Valgus loading at patellofemoral joint
- Possible pronation of calcaneus and mid foot

In Toeing

- Structural vs Functional
 - Structural: the femoral neck internally rotated
 - Craigs Test >45
 - Functional: Increased hip mobility due to repeated posture and/or gluteal weakness
 - Neurological Cerebral Palsy
 - Associated with children that W sit

Out Toeing

Pes planus is the most common cause of out-toeing. Flat feet give the appearance of "too many toes."

Femoral retroversion not as likely of cause

The normal range is 40-80 degrees of external rotation.

Children walk or stand with both patellae and feet pointing outward.

May have external tibial torsion

Excessive Femoral Retroversion

Position of the femoral head with the foot straight.

Most patients with excessive femoral retroversion "out-toe" to better position the femoral head.

Out Toeing

- Rule out SCFE
- Rule out Legg-Calve Perthes
- Look at tibial torsion
- External contracture of hip
- Causes & Treatment
 - Typically corrects by age 10
 - May need orthotics
 - Surgery for severe cases A

Leg Length Discrepancy

- Hip hike through stance phase
- Structural:
 - Tibia or femur length is not symmetrical bilaterally
- Functional:
 - Muscular imbalance
 - Pelvic alignment
 - Asymmetrical foot alignment

Leg Length Discrepancy

- Assessment: Standing and Supine
 - ASIS
 - PSIS
 - Greater Trochanter
 - Fibular Head
 - Malleoli
 - Measure ASIS to Medial Malleoli
 - Galeazzi sign

Leg Length Discrepancy

- Rule Out
 - Hip Dysplasia
 - Legg Calve Perthes syndrome
 - Slipped Capital Femoral Epiphysis
 - Arthrogryposis

"You, sir, have a leg length discrepancy!"

Scoliosis

- Structural:
 - Rigid curvature of spine

- C curve: usually thoracic area (right convex)
- S curve: usually with cervical and lumbar component
- Functional:
 - Muscular Imbalance
 - Poor Posture
 - Residual torticollis?
 - Secondary to LLD

Scoliosis

- Curvature
 - Look at Risser level
 - -20 degree or less = PT

- Assess LLD and muscular imbalance
- Core stabilization
- 20+ degree = Scoliosis clinic
 - Likely PT for postural work and core stabilization
 - Possible bracing
- 50+ degree & functional impact = Surgical

Toe Walking

- Children who ambulate with bilateral toe to toe pattern
- Should resolve after 6 months of independent walking

Toe Walking

- Considerations:
 - Habitual
 - Sensory Involvement
 - Achille Contracture (chicken or egg)
 - Leg Length Discrepancy if only one foot
 - Sever's with single Leg
 - Rule Out Neurological Involvement

Toe Walking

- Assessment
 - Range of Motion
 - Gait & Mobility
 - Squat / Floor to stand
 - Strength & tone
 - Leg length
 - Neurological
 - Deep Tendon Reflexes
 - Retained Reflexes
 - Ankle/foot alignment
 - Sensory / Vision

Vestibular Disorders

- Affect:
 - Safety
 - Gait
 - Coordination
 - Perception

– Participation with Physical Education

Vestibular Disorders

- Manifestations
 - Increased falls
 - Postural dysfunction
 - Abnormal perception of motion
 - Blurred or Bouncing Vision

Vestibular Development

- Primitive and mature reflexes require many inputs from the vestibular system and output reflexes of the vestibulocular and vestibulospinal
- Age 4-6 the vestibular symptom is mostly developed
- After age 5 children should be able to use visual fixation to assist with postural stability

Symptom History

- Decreased visual-spatial abilities
- Hearing loss
- Motion sensitivity/sickness
- Nystagmus
- Praxis
- Frequent falls
- Difficulty in the Dark
- Fear of movement

Vestibulocular Reflex

- 20% of toe walkers have abnormal VOR
- Interventions include visual exercises with prism glasses with toe walkers
- Approximately 75% of the time, ambient prism lenses will lead to an immediate change.

Vision Development

- Bouncing Vision
- Depth Perception
- Corrective Lens
 - Large Base of support
 - Increased upper extremity support with ambulation
 - Increased episodes of falling

Questions?

